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Black Hole Binaries emit Gravitational Waves

2Image credit: Kavli Foundation, LSC;
https://cqgplus.files.wordpress.com;

• Orbiting systems of stars evolve 
into binary black holes. They 
emit gravitational waves and 
lose orbital energy.

• Orbits keeps tightening till the 
black holes collide. Remnant is 
also a black hole.

• Remnant black hole is very 
distorted at birth. It emits 
gravitational waves and settles 
down to a quiescent state.

https://cqgplus.files.wordpress.com/
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GW Observations with LIGO

PC: University of Bath



GW observations: these black holes are heavy!
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Massive binaries ➔ Strong-field non-linear GR 
dynamics observable!

Decreasing 
binary mass
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Numerical simulations are necessary for BBH science
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Image credit: Harald Pfeiffer, SXS Collaboration;
Abbott ..PK..et al (2016), Phys. Rev. Lett. 116, 061102;

For BBH, last ~10 orbits, merger and 
ringdown, can only be computed with full 
numerical solutions of Einstein’s equations.

Without Numerical Relativity:
• GW events like GW150914,GW151226, 

GW170104 - would have had much lower 
significance (“probable” vs “confident” 
detection)

• If GW150914’s source merged 25% further 
away, it would not even have been 
detected in Livingston

• We would only very approximately 
determine black hole characteristics from 
the GW signal

• We could not have tested GR
60 - 90 Mʘ

60 - 70 Mʘ

GW150914 
parameter 
estimation



Simulating Binary Black Hole Coalescence
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Black holes and Neutron stars

http://www.youtube.com/watch?v=6g807FFZYqM
http://www.youtube.com/watch?v=c-2XIuNFgD0


GR and Einstein’s Equations
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• Newtonian gravity:
Flat Space-time

• Einsteinian gravity:

(i) Curved space-time

(ii) Geometry represented by the 
space-time metric                  , a,b = { x,y,z,t }. 

Metric is determined by solving Einstein 
Field Equations 



GR and Einstein’s Equations
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• (ii) Geometry represented by the 
space-time metric                  , a,b = { x,y,z,t }. 

Metric is determined by solving Einstein 
Field Equations:
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100 kFlops*

* https://en.wikipedia.org/wiki/IBM_7090
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Solving Einstein Equations: 3+1 split
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• Goal: Space-time metric  gab satisfying

• Split space-time into  space and time

Evolution equations

Constraints
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• Goal: Space-time metric  gab satisfying

• Split space-time into  space and time

Evolution equations

Constraints
Maxwell’s equations
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Snapshots of 
evolution 

domain at 
different times

Solving Einstein Equations: 3+1 split



What makes it challenging:
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length scales:

• Size of BH ~ O(1M)

• Separation ~ O(10M)

• Wavelength λGW ~ O(100M)

• Wave extraction ~ several λGW 

• GW flux, that drives the inspiral, is small:



What makes it challenging:
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length/time scales (BH size ~O(1); λGW ~O(100), Outer bdry 
~O(1000))

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially: for many years decades

5. Resolving shocks (discontinuities)

6. Computational Challenges:
• 20–50 variables
• Global timestep too small
• Computing efficiency

7. High accuracy required by LIGO:

• Absolute phase error <<  1 rad / 20+ orbits



What makes it challenging:
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1. Multiple length scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints C = 0: for many years, ∂tC ~ C

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO

But, in vacuum, solutions are smooth   ⇒  Spectral methods



Spectral Einstein Code (SpEC*)
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Goal: Solve Einstein’s equations to enable robust gravitational-wave science

In development since 2002

650,000 lines,  130 publications

Brief timeline of developments:

2005, Pretorius:                                          First BBH merger

2006, Goddard group & UBT group:  BBH mergers with different formulation

2007, BBH mergers with SpEC code: Now leading code to provide waveforms for LIGO

Simulations of Extreme Spacetimes (SXS) collaboration

* http://www.black-holes.org/



SpEC: (non-local) Spectral discretization
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Evolution quantities are smoothly varying.

• Expand them in basis-functions, solve for 
coefficients

• Compute derivatives exactly

• Compute nonlinearities in physical space

Spectral

Finite differences



Domain decomposition
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Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014;
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 I1: Chebyshev
       polynomials
S1: Fourier
S2: Scalar Ylm
B2: One-sided Jacobi 
        polynomials.

• Local resolution 
controllable 
dynamically

• MPI 
parallelization by 
sub-domain 
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Initial data: Solve Einstein constraint equations

• Need {Kij, gij} that satisfy Einstein constraints

• Conformal formulation of constraints. Free data 
provided for {conformal 3-metric, K, and their ∂t}

• Solve constraints for uδ = {ψ, N, Nk}. Boundary 
conditions for uδ, on SA & SB & ∂D, give desired 
physics: BH spins and orbital properties.

• Second-order coupled Elliptic PDEs

Pfeiffer et al, Comput.Phys.Commun. 152 (2003) 253-273;
[1] Ossokine et al, Class. Quant Grav, Vol 32, 24 (2015)
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Initial data: Solve Einstein constraint equations
Newton Raphson for elliptic equations

• Need {Kij, gij} that satisfy Einstein constraints

• Conformal formulation of constraints. Free data 
provided for {conformal 3-metric, K, and their ∂t}

• Solve constraints for uδ = {ψ, N, Nk}. Boundary 
conditions for uδ, on SA & SB & ∂D, give desired 
physics: BH spins and orbital properties.

• Second-order coupled Elliptic PDEs :

• Expand on spectral bases in each sub-domain:

• Linearize S and solve with Newton-Raphson

• Adaptive refinement of grid for high mass-ratios

Pfeiffer et al, Comput.Phys.Commun. 152 (2003) 253-273;
[1] Ossokine et al, Class. Quant Grav, Vol 32, 24 (2015)
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We evolve a first order 
representation of Einstein 
evolution equations:

Evolution: First-order system
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We evolve a first order 
representation of Einstein 
evolution equations:

Principal parts:

Evolution: First-order system
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We evolve a first order 
representation of Einstein 
evolution equations:

Principal parts:

Subject to constraints:

Evolution: First-order system
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Evolution: First-order system

We evolve a first order 
representation of Einstein 
evolution equations:

Principal parts:

Subject to constraints:

… which can grow exponentially!
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An illustrative example :
 scalar wave in flat spacetime

First-order form:

Constraint:

Constraint evolution:

Constraint Damping: Example
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Constraint Damping: Example

An illustrative example :
 scalar wave in flat spacetime

Modified first-order form:

Constraint violations exponentially 
damped:
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Constraint Damping: Einstein Equations

With damping terms, evolution 
equations expanded:

Modified first-order form:

Constraint violations exponentially 
damped!

Lindblom et al, Class.Quant.Grav.23:S447-S462,2006;
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Singularity treatment: excision

• Formulation of field equations 
is causal

• No boundary conditions 
required

• The excision boundary must 
track the shape and motion of 
the horizon

Image credit: H. P. Pfeiffer

Excision surface
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Robustness: Adaptive Mesh Refinement

Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014;

Truncation error (or spectral basis 
representation error) is the primary 
accuracy diagnostic

Can be specified and thresholded on 
in a spacetime dependent manner
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Robustness: Adaptive Mesh Refinement

Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014;

Truncation error (or spectral basis 
representation error) is the primary 
accuracy diagnostic

Can be specified and thresholded on 
in a spacetime dependent manner

Numerical/Grid resolution is 
controlled through truncation error. 
We can get desired resolution in 
physically more interesting regions, 
without increasing it in the large 
wave-zone.
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q = m1/m2 = 7

Based on truncation 
error:

Type I: Collocation points 
added, domain structure 
unchanged

Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014;

Robustness: Adaptive Mesh Refinement

Add a spectral basis element when: 
truncation error > target 



38

Based on truncation 
error:

Type I: Collocation points 
added, domain structure 
unchanged

Type II: Sub-domain 
boundaries re-drawn. 
Splitting or Merging of 
subdomains.

Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014; Image credit: H. P. Pfeiffer

Robustness: Adaptive Mesh Refinement
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Robustness: Control Systems

Bela Szilagyi, Int. J Mod. Phys. D, Vol. 23, No. 6 (2014) 1430014;

• Compute (apparent) horizons often

• Sub-domains smoothly deformed to track the 
horizons’ shape and position :

• Feedback-loop control of the coefficients :  Rlm

q = m1/m2 = 10



What made it challenging:
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO



What still makes it challenging
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO

Spectral Einstein 
Code (SpEC)



What still makes it challenging
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO

Szilagyi et al (2014); Foucart et al (2016)



Back to the drawing board
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1. Discretization scheme that:
a. is local at high order
b. can handle discontinuities
c. amenable to 

inhomogeneous grid

1. Parallelization scheme that can 
scale, and use all computing 
available

1. Local time-stepping to handle 
multiple time scales

1. Multiple scales
2. Computational 

Challenges
3. Shocks
4. High accuracy

Szilagyi et al (2014); Foucart et al (2016)
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Discretization: Finite Difference Methods

● Domain is a set of collocation points
● Solution represented locally as a polynomial
● Derivatives require stencils

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)

Local at 
low-order

Local at 
high-order

Handle 
discontinuities

Inhomogeneous 
grids
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● Solution expanded on a local basis

 

Spectral Einstein Code (SpEC)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)

Discretization: Spectral Methods
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● Solution expanded on a local basis
● Local high order ⇒ exponential 

convergence in smooth regions

 

Spectral Einstein Code (SpEC)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)

Discretization: Spectral Methods
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● Solution expanded on a local basis
● Local high order ⇒ exponential 

convergence in smooth regions
● … but flux cannot handle 

discontinuities / shocks

 

Flux reconstruction requires strict 
continuity

Local at 
low-order

Local at 
high-order

Handle 
discontinuities

Inhomogeneous 
grids

Discretization: Spectral Methods

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)
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● Solution represented by cell averages

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)

Discretization: Finite Volume Methods
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● Solution represented by cell averages
● Flux reconstruction can handle shocks
● … but high order requires wide stencils (as in FD)

 

Flux reconstruction needed

Local at 
low-order

Local at 
high-order

Handle 
discontinuities

Inhomogeneous 
grids

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)

Discretization: Finite Volume Methods
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● Solution expanded on a local basis

 

Discretization: Discontinuous Galerkin (DG)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)
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● Solution expanded on a local basis
● Exponential convergence in smooth regions
● … and formulation allows “arbitrary” fluxes ⇒ 

can handle shocks!

 

Local at 
low-order

Local at 
high-order

Handle 
discontinuities

Inhomogeneous 
grids

Discretization: Discontinuous Galerkin (DG)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)



● Evolve the solution in time depending on the local needs
● No wastage of computing due to one corner with high-frequency activity
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Local time-stepping

Szilagyi et al (2014)



● Evolve the solution in time depending on the local needs
● No wastage of computing due to one corner with high-frequency activity

53
PC: Throwe and Teukolsky

Local time-stepping
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Parallelization scheme: MPI Domain based

● Allocate one domain element per 
core

● Use MPI

⇒ ...terrible terrible idea for systems 
with length scales that span several 
orders of magnitude!

Szilagyi et al (2014).



● Divide computation by tasks, not physical domain
● Make communication of data between elements also a task
● Communication-cost hidden behind computation
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Parallelization scheme: Task-based

Kidder et al (2016); Stark et al (2014).
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SpECTRE: scaling

● SpECTRE aims to combine the high-order accuracy of spectral methods with the 
local nature of finite-volume/element methods

● Future proof: Computing efficiently scales to ~600, 000 cores. Future proof: 
exascale computing!

Current codes

Kidder et al (2016);
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SpECTRE: parallelism

Kidder et al (2016);
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SpECTRE: parallelism

Kidder et al (2016);
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1. Spectre is a radically forward-looking 
computational (astro)physics code 
that adopts cutting-edge computing 
paradigms: 

a. DG-FEM discretization
b. Local time-stepping
c. Task-based parallelism

1. TBP will enable exascale computing

2. Einstein/MHD equations 
implemented

3. Boundary treatment nearly complete

1. Need control systems!

1. Spectre is open-source!

Summary
https://github.com/sxs-collaboration/spectre

https://github.com/sxs-collaboration/spectre


Thank You for Listening!

Questions?
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