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Introduction

I Black holes (BH) are objects of immense importance for
astrophysics, cosmology and for understanding the nature of
gravity itself.

I It is also believed that BH will provide us with a deeper
understanding of quantum gravity, just like the hydrogen atom
helped us to understand the quantum nature of matter.

I Clasically, BH are a class of solutions of the Einstein (or the
appropriate) equations of motion.

I Einstein’s Equations: Rab − 1
2R gab = 8πGTab.

We shall use c = 1 units here.



An example

I An well known example is the Schwarzschild solution.

I Assume: Vacuum (Tµν = 0) and Spherical Symmetry.

I ds2 = −(1− 2m
r )dt2 + (1− 2m

r )−1dr2 + r2dΩ2, m = GM.

I Note the following properties of the metric:

(a) Metric coefficient diverges at r = 0 and at r = 2m.

(b) As r →∞, the metric becomes Minkowskian.

(c) The metric has 4 independent Killing Vector Fields (KVF):

the time translation generator ta := (∂/∂t)a,

and the three angular momentum generators Lai , i = 1, 2, 3.



The spacetime is 4 dimensional of signature (−+ ++).

I The surface r = 0 is called the singularity while the surface
r = 2m is called the Event Horizon (EH).

I Since tata = −(1− 2m
r ),

ta becomes a null/ lightlike vector on the EH.
At r →∞, the spacetime is Minkowskian and tata = −1.
ta is spacelke for r < 2m.

I r = 2m is a special surface called the Schwarzschild radius.



The formation of EH from gravitational collapse of dust in the
homogeneous mass models of Oppenheimer- Snyder (1939) and
Dutt (1938).



The EH in marginally bound OSD model

The metric for this spacetime :

ds2 = −dt2 + R ′(r , t)2 dr2 + R(r , t)2
(
dθ2 + sin2 θ dφ2

)
.

Equation for collapsing shell of radius R(r , t), mass F (r) = m r3:

R(r , t) = r

[
1− 3

2

√
F

r3/2
t

] 2
3

.

R(r , ts ) = 0 is reached by all shells simultaneously at
ts = (2/3

√
m).

How does the event horizon behave ?

The EH begins as soon as the first shell begin to collapse. This is
the teleological nature of the EH:
EH anticipates the formation of a black hole horizon in the future.



The EH is the last null ray reaching the null infinity. Using the
matching conditions and mass function, one may track the EH for
the OSD as well as LTB (inhomogeneous) collapse models
(Chatterjee, Jaryal, Ghosh, PRD 2020).
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Unless one has knowledge of the entire future development of the
spacetime, EH cannot be located, need the past of null infinity.
Determination of EH depends on the final condition rather than
the initial condition.



The laws of mechanics for stationary EH

Using stationary BHs (Killing horizons) and their linear
perturbations, one obtains laws for transition from one equilibrium
state to another nearby equilibrium state.(Bardeen, Carter,
Hawking, 1973.).

I Zeroth Law: The Surface Gravity (κ) is constant on EH.

I First Law: δMADM = κ
8πG δAH + ΩH δJ + · · · .

I Second Law: δAH > 0. The cross-sectional area of H can never
decrease in a classical dynamical process.

These laws are remarkably similar to the laws of thermodynamics if
we identify (~κ/2π)↔ T , MADM ↔ E and (AH/4G~)↔ S .

Bekenstein (1973), Hawking (1973,1974).



Thermodynamics for EH

I It is natural to identify black holes as thermal objects, if quantum
effects are also included (Hawking, 1974).

I In String Theory as well as in Loop Quantum Gravity, these ideas
have led to important developments including counting of
microscopic states leading to black hole entropy:

S =
A

4l2P
+ α ln

A
4l2P

+ β
4l2P
A

+ · · ·+ exp(−δ A
4l2P

),

where α, β are constants, l2P = G~.

(Strominger, Vafa; Sen; Ashtekar et al; Smolin, Rovelli, Kaul-
Majumdar; Carlip; Ghosh- Mitra; Perez, · · · ).



Quick recap

I EH are not a good description of black hole horizon.
Need the knowledge of the entire future of the spacetime.
However, this has led to important discoveries.

I The task is to use a description of horizon which is (quasi)- local,
but may be useful to understand the classical and quantum
mechanical properties of black holes.



Aim of the talk

Use a better formulation of horizons.

I Explain the notion of local horizons: Marginally trapped tube
(MTT), Isolated (IH) and Dynamical horizons (DH).

(Ashtekar, Galloway, Lewandowski, Bettle, Krishnan, Fairhurst,
Krasnov, Booth, . . . )

I Show how these horizons change in classical and quantum
processes: Laws of black hole mechanics, and flux laws on horizons.

(Ashtekar- Krishnan; Chatterjee, Ghosh, Jaryal, Kumar, . . . )

I Local Lorentz charges on horizon: BH entropy.

(Chatterjee, Ghosh, Devdutt)
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Trapped Surfaces

The formulation of trapped surface by Penrose is useful in this
respect (Penrose, 1965).

Definition: A 2- dimensional closed spacelike submanifold S of a 4-
dimensional spacetime M is called trapped if both the null normals
to S have negative expansion, θ(`) < 0 and θ(n) < 0

I The trick is to draw a surface S and see how do the null normals
`a and na behave in the future.

If the area bounded by infinitesimally separated null normals
increase, we call expansion to be positive, otherwise negative.



All S are trapped in BH region and marginally trapped on the
boundary.

In the Minkowski spacetime, all S are untrapped.

Trapped surfaces capture the essential feature of a black hole
region: outgoing light rays cannot escape to observers at infinity.



The boundary of a black hole region is a 3- dimensional
submanifold such that each spacelike 2 dimensional cross- section
S is marginally trapped: θ(`) = 0 and θ(n) < 0.

It is natural to identify this boundary with the black hole horizon.

I Unlike the EH which is always null, this horizon acquires different
signatures.

I It is null when no matter /radiation falls on it, spacelike when
matter/radiation falls through it and timelike in other situations.
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MTT as a Black Hole horizon

Definition: A 3- dimensional submanifold ∆ in a 4- dimensional
spacetime is called Marginally trapped tube (MTT) if:
(Ashtekar and Galloway, 2005)

I ∆ is topologically S × R.

I Each S is marginally trapped: θ(`) = 0 and θ(n) < 0.

If ta is tangential to ∆ and normal to foliations, ta = `a − Cna.

We call ta to be the generator of ∆.

Since t · t = 2C , the constant C determines the signature and
stability of ∆ (Andersson, Mars, Simon, 2008 ).

C ><= 0 for spacelike, timelike or null.

MTT is a good quasilocal description of BH boundary/horizon.
Unlike EH which is always null, this horizon can be spacelike/ null/
timelike.



Gravitational collapse of a pressureless Gaussian profile
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Two shells falling one after the other on a black hole.
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Large mass falling on a black hole.

500 1000 1500 2000
R

1000

2000

3000

4000

t

MTT

Shell

a: MTT for Gaussian mass profile

500 1000 1500 2000
r

5. × 10-8

1. × 10-7

1.5 × 10-7

2. × 10-7

rho

500 1000 1500 2000
r

-10

-5

0

5

10
C



The OSD model.
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Isolated Horizons

When no matter falls in, ∆ is in equilibrium, C = 0 and `a

generates ∆:

I `a is a Killing vector field on ∆.

I The horizon area does not change: L` 2ε , 0.

I The (local) zeroth and the (local) first law of black hole mechanics
follows (Ashtekar et. al. 2000; Chatterjee and Ghosh, 2009).

I κ(`)= constant on ∆.

I δM∆ =
κ(`)

8πG δA+ Ω δJ · · · , on ∆.



IH: local Lorentz charges on ∆

I GR is invariant under both diffeomorphisms as well as local Lorentz
transformations.

I Do the local Lorentz transformations generate charges in the
presence of horizons?

I Isolated horizon ∆ is characterised by the equations of MTT, and
only those transformations are allowed which transform these
conditions homogeneously.

I Naturally, in the bulk, the full SL(2,C ) is allowed.

I On the Horizon (∆) the only allowed Lorentz transformation
belong to ISO(2) n R (Basu, Chatterjee and Ghosh, 2012).

I This is not surprising since ISO(2) n R is the little group of the
Lorentz group which keeps the lightlike vector ` invariant
(Weinberg, QFT).



I The four infinitesimal generators of ISO(2) n R may be written in
the `I , nI ,mI , m̄I basis.

I RIJ = 2im[I m̄J], generates rotations in (m − m̄) plane.

I PIJ = 2m[I `J] + 2m̄[I `J] and QIJ = 2im[I `J] − 2i m̄[I `J] generate
rotations in the (`−m) and (`− m̄) planes respectively.

I BIJ = −2`[InJ] generates boosts (scaling of null vectors) in the
(`− n) plane.

I It is possible to determine the Hamiltonian charges which generate
these transformations on ∆.

See Chatterjee and Ghosh (2018), Chatterjee and Ghosh, (2020).



I To determine the charges for these generators, we use the Holst
action. This action is classically equivalent to the Einstein- Hilbert
action.

I If we denote the Hamiltonian for RIJ as −J, then it can be shown
that (A/8πGγ) = J.

I If K is the Hamiltonian charge for BIJ , it arises that
(A/8πG ) = K .

I The phase space charges generated for PIJ and QIJ are called Q
and P respectively. These charges vanish identically on ∆.

I So, we get two classical expressions: (1) A = 8πGγJ,
and (2) the simplicity constraint K = γJ .

I γ is the Barbero- Immirzi parameter.



I These quantum algebra of these charges also satisfy the ISO(2)
algebra:

[J,P] = i~Q, [J,Q] = i~P, [P,Q] = 0.

I So, in the quantum theory, the states on the cross- sections of ∆
must be in the representation of ISO(2).

I These states are labelled by a single quantum number |j〉 (j ∈ N ).
These are also the eigenstates of J.

I The spectrum of the area operator is then
A|j〉 = 8πGγJ |j〉 = 8πG~γj |j〉.

I Area spectrum is equally spaced.

(Bekenstein- Mukhanov 1990s,
Alekseev- Polychronachos- Smedback, 2002).



I In the quantum theory, S∆ is assumed to be tessellated by number
of patches, much like the surface of a soccer ball.
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I The quantum state of area S is labeled by an integer |J〉 = ⊗i |ji 〉
where i is the label for the patches.

I The area operator acts on the tessellated surface as A = ⊕iAi

where each of the area patch contributes an area 8πγ`2
p ji , such

that J =
∑

i ji .



I The entropy is obtained by determining the number of independent
ways the configurations {ji} can be chosen such that for a fixed J
the condition J =

∑
i ji is satisfied.

I The entropy is given by

S =
A ln 2

8πγl2p
+ αe−A ln 2/8πγl2p ,

and for the choice γ = ln 2/2π, the leading order
Bekenstein-Hawking result is obtained, but also gives an
exponentially suppressed correction to the classical result. Should
become dominant for small areas. These results are generic and
independent of Loop Quantum Gravity/ String theory.

I The result is valid even for lP size black holes, where the
exponential corrections become important.



Hamiltonian of boost is the Wald entropy: Lovelock gravity

I The expression of horizon area as a Hamiltonian charge for boost
extends to Lovelock gravity as well (ongoing work with DevDutt).

I Action for Lovelock theory on a D dimensional manifold M is:

SL =

∫
M

[D/2]∑
p=0

αpL
(p)

L(p) = εa1...a2pa2p+1...aDF
a1a2 ∧ ... ∧ F a2p−1a2p ∧ ea2p+1 ∧ ... ∧ eaD

I D = 4, Ω(δλ, δ) = −δA∆

I D = 5 Ω(δλ, δ) = δ
∮
S∆

3ε (1 + 2αR)

I D = 7

Ω(δλ, δ) = −δ
∮
S∆

5ε[1+2α2R+3α3(R2−4RabRab+RabcdRabcd)]



Summary of the second part

I The formulation of MTT as a horizon is useful for classical and
quantum black holes.

I The laws of black hole mechanics holds on the IH.

I Wald entropy is the hamiltonian charge for the boost
transformation on IH.

I The horizon area must be discrete with an equally spaced area
spectrum, A = 8πG~γj with j ∈ N .

I Further, the isolated horizon has an the leading entropy given by
the Bekenstein- Hawking value:

S =
A
4l2p

+ αe−A/4l2p ,



Dynamical horizons: Supertranslations

I The section of the MTT for which C 6= 0, is the dynamical horizon
(DH).

I Super translation symmetries exist on a IH, but is it a symmetry on
a Dynamical horizon ? No.

I Induce supertranslations on a future IH through a flux of radiation
through a DH.

I On IH, the super translation may be used to choose good
foliations: ∇A ω

A = 0.

I So, is it possible to induce ∇A ω
A 6= 0 through a flux? Yes, This is

like the Bondi news.

I One may show that such terms are induced through a physical
process where Tab violates energy conditions.



Hawking radiation

I Consider a spherically symmetric background metric

ds2 = −2e−f dx+dx− + R2(dθ2 + sin2θdφ2) .

I For the Hawking radiation, the generator of DH, ta is timelike with
C < 0.

I This implies that LtA < 0, area of horizon decreases.

I How much is the rate of decrease of area? This is the flux law:

F =

∫
dµ Tµν n̂

µK ν = −1

2
(R2 − R1).



Open questions and future directions

I Is MTT the true boundary of the black hole region ? Eardley’s
conjecture: The outer boundary of the region containing outer
trapped surfaces is the event horizon.

I What is the role of non- spherical trapped surfaces ? They may
extend out to the flat region of the spacetime.

I Need a complete understanding of the corrections to entropy.

I Is there a MTT based derivation of the Hawking radiation beyond
spherical symmetry? Need to go beyond the Isolated framework.



Thank You
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